
Live patching as a core
security concern

Paradigm shift

Agenda

● What is live patching?

● What problems does it solve?

● What can be live patched?

● How are live patches created and how do they differ from regular
patches?

● Integrating a live patching solution into an automated workflow

Live Patching - How it started

● In 2006, Jeff Arnold, a student at MIT, started working on what would
eventually become ksplice

● A way to apply changes, specifically security patches, to running
Linux kernels without interrupting processes or users

● The motivation was a hacked system while a patch existed but
couldn’t be applied in a timely fashion

Live Patching - 16 years gone by, the same
problem exists

● Deploying security patches on time is still heavily
constrained by the availability of maintenance
windows

● For 56% of organizations, patches for Critical or
High-Priority vulnerabilities take, on average, 5
to 6 weeks to be deployed*

● That is a very large risk window for your
organization and a very large window of
opportunity for malicious actors

• “State of Enterprise Linux Security Management” - A study conducted by the
Ponemom Institute, targeting IT leaders across different industries. Can be
download here: https://tuxcare.com/introducing-the-state-of-enterprise-linux-
security-report/

The underlying issue

● The way patch operations are done has not changed, even when
the technology available has

● The rate at which new vulnerabilities appear has been steadily
growing year-on-year (5% per year for Kernel vulnerabilities alone)

● System downtime is one of the big friction points between IT teams
and other business units

Context

● According to Cloudflare*, Log4j was being actively exploited
before public disclosure

● Patching 30 days after disclosure means that your systems are
vulnerable for 30 days in addition to whatever happened before
disclosure

● Hackers don’t need your help

● Log4j first exploit attempts after public disclosure – 9 minutes

• https://blog.cloudflare.com/exploitation-of-cve-2021-44228-before-public-disclosure-and-evolution-of-waf-evasion-patterns/

Compliance rules are changing

• 30 days patch window is a "best practice" today

o Shrunk from 6 months, to 3 months, to 1 month within a decade

• Ransomware attacks are causing people to start
questioning if that window is too long

• Patching within 30 days will meet compliance…
but not security needs

Live patching to the rescue

● Live patching is a better way to
deploy patches

● This was recognized by different
teams when kSplice was acquired
and became focused solely on
Oracle’s own distribution

● Three new projects, kPatch, kGraft
and KernelCare, were started as
alternatives

The patches

● Replacing running code is not trivial, but simple function code changes
are easier than bigger changes touching multiple functions

● Most vulnerabilities are fixed with one-liners: bounds-check, off-by-one,
input validation

● As long as function signatures or data structures don’t change, live
patching is easier

The different Kernel facilities for Live Patching

● There are usually multiple ways to
do something in the Linux Kernel

● Live patching follows this trend:

○ Livepatch - patch creation/loading

○ Ftrace - tracing/debugging tool
repurposed to aid live patching by
adding custom code at specific
instructions

○ Kprobes - debugging tool
repurposed to aid live patching with
breakpoints in specific functions

○ eBPF - A mechanism to attach logic
at certain hook points in the kernel

Ftrace

● Tracing mechanism originally built to help
developers writing code for the Kernel

● With it, you can add custom code
handlers that run whenever a specific
instruction is reached

● It can be used to redirect execution away
from the “bad” function to the “corrected”
version

Kprobes

● Generic way of adding breakpoints at any instruction

● By setting the breakpoint at strategic locations before applying a patch, you
can check if the function you want to change is in use (for example, by
checking the stack)

● It’s desirable that the function being patched is not in use. Some tools will wait
for the right opportunity to apply a live patch

For more information: https://www.kernel.org/doc/html/latest/livepatch/livepatch.html

How they all work together (or not)

● The most common way to use them is adding kprobe’s breakpoints inside of ftrace
handler code at the start of the functions you want to change, then using livepatch to
load the fixed code into the kernel memory space

● Some of their functionality conflicts with each other (some ftrace instructions can be
overwritten by some livepatch calls, for example)

● Kprobes and ftrace are repurposed kernel facilities, not designed with live patching in
mind

● Third-party live patching solutions will often have their own custom ways for achieving
live patching

Livepatch

● Eventually, the kPatch and kGraft project’s common features were merged
into “livepatch” and included in the Linux Kernel

● Livepatch contains basic functionality for live patch creation and loading

● Some third-party tools for live patching use livepatch functionality, while
others have opted for their own implementation to achieve the same goal

For more information: https://www.kernel.org/doc/html/latest/livepatch/livepatch.html

Consistency model

● The code execution should be in a “safe” situation before applying a patch

● You don’t want to replace a function when it’s in use, or active locks are
originating from it, or memory assignments are not yet released

● Live patching tools will have mechanisms that “wait” for this safe situation to
appear, and may even refuse to apply a patch if they can’t find one

● Maintaining consistency is one of the trickier parts of the process

For more information: https://www.kernel.org/doc/html/latest/livepatch/livepatch.html#consistency-model

Patches - How they are created

● Like “regular” patches, it all starts with the code
that fixes the problem

● Live patching specific issues are addressed:
function signature changes, data structure
changes, non maskable interrupts. These are
some of the new concerns when creating these
patches

● A binary “diff” between the running code and the
new code has to be created and packaged in
such a way that it can be deployed on different
systems

Build environments

● Tiny differences in build environments can create big changes in binary outputs

● This means that binary “diffs” will be unusable

● Compiler, linker, and binutils changes like different versions or flags will all likely
invalidate patch creation

● Every different kernel version or distribution supported by a live patching tool
requires a different build environment

Testing

● Live patches, like traditional patches, need to be tested

● Not just for actually fixing what they are supposed to fix, but also for
unexpected side-effects of being deployed live

● It’s desirable to use extensive test automation when creating live patches and
to continually expand the tests with validation for every new fix introduced

● Traditional Kernel tests* often not suitable for live patching integration

*For more information: https://www.kernel.org/doc/html/latest/dev-tools/testing-overview.html

Patch creation

Loading into kernel memory space with a live patching

provider-specific tool

Enabling/activating the patch

Maintaining the consistency of the kernel, the live patching tool will probably:

Pause the process briefly

Check if the function is in use or not

If it’s safe, apply the code change to redirect the function to the new code. If not, retry later.

Unpause the process

Disabling/removing the patch

Lifetime of a life patch

Other ways to 'update'
kernel without reboot

● Kexec lets you replace the running
kernel with another

○ Requires a whole new kernel to be loaded
and restarts the existing user space
processes

What about userspace?

Patching one running process should be the same
no matter what that process is

Except:

● coroutines / schedulers need to be taken into account

● stack usage (exceptions) need to be taken into
account

Services like databases or libraries
like OpenSSL, glibc & QEMU would
benefit from live patching.

Creating a patch - Example (1/5)

For more information and the complete test example: https://github.com/cloudlinux/libcare/blob/master/docs/internals.rst (under “Manual patch Creation”)

Original code Patched code

Creating a patch - Example (2/5)

We want to compare the
assembly code obtained
through:

For more information and the complete test example: https://github.com/cloudlinux/libcare/blob/master/docs/internals.rst (under “Manual patch Creation”)

Looking at the changes
with diff, we can see
the added text and the
code changes.

Creating a patch - Example (3/5)

Every live patching solution has its own scripts to
aid in patch creation, and so does TuxCare’s. We
use “kpatch_gensrc” to create a patch file from the
binary diff:

This will create a very long file with assembly code
and special sections for the patch deployment tool.
You can find the complete output at the github
repository linked below.

For more information and the complete test example: https://github.com/cloudlinux/libcare/blob/master/docs/internals.rst (under “Manual patch Creation”)

(...)

Creating a patch - Example (4/5)

Now moving from assembly to the
compiled code, using the special linker
flag “-q” to store relocation information:

For more information and the complete test example: https://github.com/cloudlinux/libcare/blob/master/docs/internals.rst (under “Manual patch Creation”)

There is still a process for fixing relocations
that is detailed in the github repository and
not shown here. After that is done, the
binary patch is finally obtained with:

Some clean up is still needed:

Creating a patch - Example (5/5)

Applying the patch:

For more information and the complete test example: https://github.com/cloudlinux/libcare/blob/master/docs/internals.rst (under “Manual patch Creation”)

Note that the actual file on disk for the original process has not been touched, so
that a restart would bring back the original behavior.

Add the KernelCare installation one-liner to your Linux system deployment
scripts: curl -s -L https://kernelcare.com/installer | bash

Centrally manage the patch deployment process through ePortal

Patch deployment:

Either fully automatic or manual deployment:

If fully automatic, systems will check for new patches every 4 hours (configurable)

If manual, patches can be centrally approved for all systems or for groups of systems

All deployed patches can be reverted if so desired (a performance regression, for example)

No files on-disk are touched

Never schedule another maintenance window just for patching

Automating TuxCare’s live patching

Integrations

● As live patching only changes code in-memory, vulnerability and other
management tools may incorrectly flag a system as vulnerable even after it is
patched

● KernelCare integrates out-of-the-box with the most common tools and
management solutions to provide accurate reporting and auditing information
(Nessus, Qualys, Rapid7, Puppet, Ansible, Chef, Datadog, Crowdstrike)

● .

Paradigm shift

● IT is usually very fast at adopting new technologies but rather slow
at changing processes

● Live patching is reliable and proven — and a better way to deploy
patches

● It doesn’t just shorten maintenance windows — it completely
eliminates their use for patching

● You no longer need to choose which CVEs to patch – simply patch
all of them – there is no downside

● In addition to being secure faster, it gives you back control over your
operations – you’re no longer simply reacting to new threats, you’re
actually planning your response

Get in touch:

Thank you!

jcorreia@tuxcare.com

@jcorreiacl

