
Resilient puppet in the cloud
OSAD 2022

Dr. Jan Bundesmann

October 4th, 2022



Agenda

1 Cloud & Puppet: Is this a thing?

2 Stacked puppetserver infrastructure

3 Target focussing: Agents as stacks & units

4 Conclusions and Outlook

#ATIX



Agenda

1 Cloud & Puppet: Is this a thing?

2 Stacked puppetserver infrastructure

3 Target focussing: Agents as stacks & units

4 Conclusions and Outlook

#ATIX



Why wouldn’t it be a thing?

▶ Old-fashioned: no cloud when Puppet was invented

▶ Slow: 30min heartbeat vs. seconds in GitOps

#ATIX – 2



Expectation management

▶ No immediate spin-up

▶ No immutable infrastructure

▶ auto-deployment

▶ arbitrarily complex infrastructure

▶ No pets, no cattle

▶ Manageable complexity

#ATIX – 3



Agenda

1 Cloud & Puppet: Is this a thing?

2 Stacked puppetserver infrastructure

3 Target focussing: Agents as stacks & units

4 Conclusions and Outlook

#ATIX



What? Stacks?

Stacks: components of (distributed) applications, consisting of one or more units

#ATIX – 4



Why? Stacks?

▶ De-individualize instances

▶ Care for working units
▶ Redeploy non-working units
▶ Stack broken?

▶ For puppet: use cloud mechanisms, map cloud features

▶ DBaaS, GITaaS
▶ Scalability
▶ Identity and Access Management, Secret Management

#ATIX – 5



How? Stacks?

▶ Single source of thruth

▶ One CA, multiple puppetservers

▶ Access rights
▶ Backup
▶ Unique identifiers

▶ Race conditions

▶ Tolerance for DB inaccessibility
▶ Logging / Monitoring: expected failures (regarding PuppetDB in particular)

▶ Puppet manages everything

#ATIX – 6



How? Stacks?

▶ Single source of thruth → control repository, r10k

▶ One CA, multiple puppetservers

▶ Access rights
▶ Backup
▶ Unique identifiers

▶ Race conditions

▶ Tolerance for DB inaccessibility
▶ Logging / Monitoring: expected failures (regarding PuppetDB in particular)

▶ Puppet manages everything

#ATIX – 6



How? Stacks?

▶ Single source of thruth → control repository, r10k

▶ One CA, multiple puppetservers → shared folder, each instance considers itself
singular

▶ Access rights
▶ Backup
▶ Unique identifiers

▶ Race conditions

▶ Tolerance for DB inaccessibility
▶ Logging / Monitoring: expected failures (regarding PuppetDB in particular)

▶ Puppet manages everything

#ATIX – 6



How? Stacks?

▶ Single source of thruth → control repository, r10k

▶ One CA, multiple puppetservers → shared folder, each instance considers itself
singular

▶ Access rights
▶ Backup
▶ Unique identifiers

▶ Race conditions → Eventual consistency through foreman modules

▶ Tolerance for DB inaccessibility
▶ Logging / Monitoring: expected failures (regarding PuppetDB in particular)

▶ Puppet manages everything

#ATIX – 6



How? Stacks?

▶ Single source of thruth → control repository, r10k

▶ One CA, multiple puppetservers → shared folder, each instance considers itself
singular

▶ Access rights
▶ Backup
▶ Unique identifiers

▶ Race conditions → Eventual consistency through foreman modules

▶ Tolerance for DB inaccessibility → soft_write_failure
▶ Logging / Monitoring: expected failures (regarding PuppetDB in particular)

▶ Puppet manages everything

#ATIX – 6



How? Stacks?

▶ Single source of thruth → control repository, r10k

▶ One CA, multiple puppetservers → shared folder, each instance considers itself
singular

▶ Access rights
▶ Backup
▶ Unique identifiers

▶ Race conditions → Eventual consistency through foreman modules

▶ Tolerance for DB inaccessibility → soft_write_failure
▶ Logging / Monitoring: expected failures (regarding PuppetDB in particular)

▶ Puppet manages everything → next section

#ATIX – 6



Buzzwords and stats

▶ Infrastructure is

▶ Ephemeral
▶ Idempotent
▶ Not Immutable

▶ Cloud manages scaling of stacks

▶ Autoscaling, load balancing
▶ Unique identifiers

▶ Redeployed within 20 minutes

▶ Raw OS images
▶ Accelerate with your

specialized images

#ATIX – 7



Agenda

1 Cloud & Puppet: Is this a thing?

2 Stacked puppetserver infrastructure

3 Target focussing: Agents as stacks & units

4 Conclusions and Outlook

#ATIX



How does puppet work

#ATIX – 8



How to choose classes

▶ Server chooses (very old)

1 node 'www1.example.com' {
2 include common
3 include apache
4 include squid
5 }

▶ Server chooses (nowadays, using hiera lookup)

1 hiera_include('classes')

#ATIX – 9



Determine classes from hiera

hiera.yaml:

1 ---
2 version: 5
3 defaults:
4 hierarchy:
5 - name: "Per-node data"
6 path: "nodes/%{::trusted.certname}.yaml"
7 - name: "Other YAML hierarchy levels"
8 path: "common.yaml"

Hiera structure:

1 .
2 +-- common.yaml
3 +-- nodes
4 +-- www1.example.com.yaml
5 +-- www2.example.com.yaml

common.yaml:

1 classes:
2 - common

nodes/www1.example.com.yaml:

1 classes:
2 - apache
3 - squid

nodes/www2.example.com.yaml:

1 classes:
2 - nginx
3 - certbot

#ATIX – 10



Focus on your facts

▶ Write facts

▶ custom facts (written in ruby)
▶ external facts (written in any language)
▶ hostname based
▶ ip-range based
▶ query API of inventory system
▶ simple plain JSON or YAML files

▶ Which facts determines the stack?

▶ Use hiera to aggregate classes as in roles, profiles or stacks!

#ATIX – 11



Obtain list of profiles using mapped_paths

1 ---
2 version: 5
3 defaults:
4 hierarchy:
5 - name: "roles"
6 mapped_paths:
7 - stacks
8 - stack
9 - "stack/%{role}.yaml"

10 - name: "Generic defaults"
11 path: "common.yaml"

1 .
2 +-- common.yaml
3 +-- stack
4 +-- jitsi.yaml
5 +-- pizza_delivery.yaml
6 +-- puppetdb.yaml
7 +-- puppetserver.yaml
8 +-- wordpress.yaml

#ATIX – 12



Example: puppetserver

/etc/facter/facts.d/
roles.json:

1 {
2 "stacks": [
3 - "puppetserver"
4 ]
5 }

puppetserver.yaml

1 ---
2 classes:
3 - puppet
4 - puppet::server::puppetdb
5
6 puppet::server: true
7 puppet::server_ca: true
8
9 # important: the module by default tries to contact a

foreman instance
10 # the following three parameters prevent this
11 puppet::server_foreman: false
12 puppet::server_foreman_facts: false
13 puppet::server_external_nodes: ''
14
15 # settings for storing catalogs and facts in puppetdb
16 puppet::server_storeconfigs: true
17 puppet::server_reports: store,puppetdb
18 puppet::server::puppetdb::server: puppet-db.server.in.the

.cloud
19 puppet::server::puppetdb::soft_write_failure: true

#ATIX – 13



Example: Application

/etc/facter/facts.d/
roles.json:

1 {
2 "stacks": "wordpress"
3 }

wordpress.yaml

1 ---
2 classes:
3 - wordpress
4 - reverse_proxy
5
6 reverse_proxy::virtual_server:
7 - name: %{::facts.fqdn}
8 proxy_backend: http://localhost:8080
9

10 wordpress::installed_plugins: recipes

#ATIX – 14



Agenda

1 Cloud & Puppet: Is this a thing?

2 Stacked puppetserver infrastructure

3 Target focussing: Agents as stacks & units

4 Conclusions and Outlook

#ATIX



Summary

▶ De-cluster using stacks!

▶ Use stacks to strengthen and fasten your infrastructure!

▶ Empower your agents to choose stacks!

#ATIX – 15


	Cloud & Puppet: Is this a thing?
	Stacked puppetserver infrastructure
	Target focussing: Agents as stacks & units
	Conclusions and Outlook

