

Location-independent management of CarPCs in the cloud

Patrick Banholzer (Mercedes-Benz AG) Stefan Bogner (B1 Systems GmbH)

Mercedes-Benz The best or nothing.

October 4th, 2022

Personal information

Patrick Banholzer

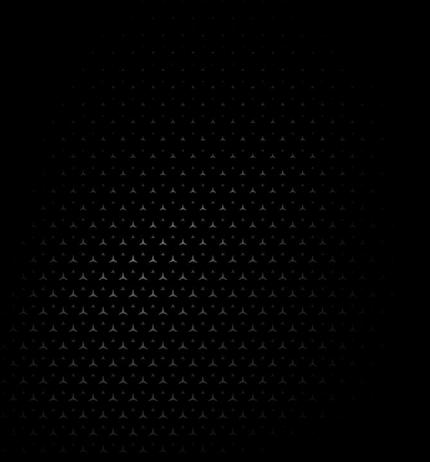
Current Position: Mercedes-Benz AG Cloud & DevOps Engineer

Building CICD & Testing for ADAS

Experience:

Deep knowledge in IT infra & automation Motto: automate everything!

Stefan Bogner


Current Position: B1 Systems GmbH Linux Consultant und Trainer

System- and Configmanagement & Deployment Linux Client Management

Experience: All Linux / Open Source

Agenda

- What is a "CarPC"?
- Purpose and enabled use-cases of CarPCs
- Legacy operations setup
- External factors for architecture design
- Pro/Con Legacy vs. Cloud
- New approach, architecture
- Tools & Services
- Deployment process
- Technical challenges

What is a CarPC?

- Standard PC in industrial chassis
- Located in the trunk of a dev-car
- OS: Ubuntu LTS
- UI: KDE Plasma with custom software

- Inputs / observation done by front-seat passenger via head unit and additional displays
- Input devices touch display & keyboard + touchpad

Purpose of a CarPC

- Used in automated driving projects
- Control unit for measurement system in the car

 Start recording, trigger and tag situations, check sensor functionality

• Visualization of measurement data

• SW-Updates of measurement systems and ECU's

Enabled use-cases

Remote access to system

Update and configuration

Health check and debugging

• Meta info transfer to backend

External factors on design decisions

- Worldwide fleet operations
 - Collecting data (on street)
 - Support developers in test / development vehicles
 - Continuous QM within test-benches
- "Always On" remote connectivity
 - Not only garage and workshops
 - >> Aswell on the road and far-off test campaigns
- Enable third parties who are involved in development

Legacy approach of operations & setup

Maintaining and managing systems within Mercedes-Benz Corporate Network by relying on proven concepts and technologies

<u>Advantages</u>

- Reuse of existing services and processes
- quicker "time to market"

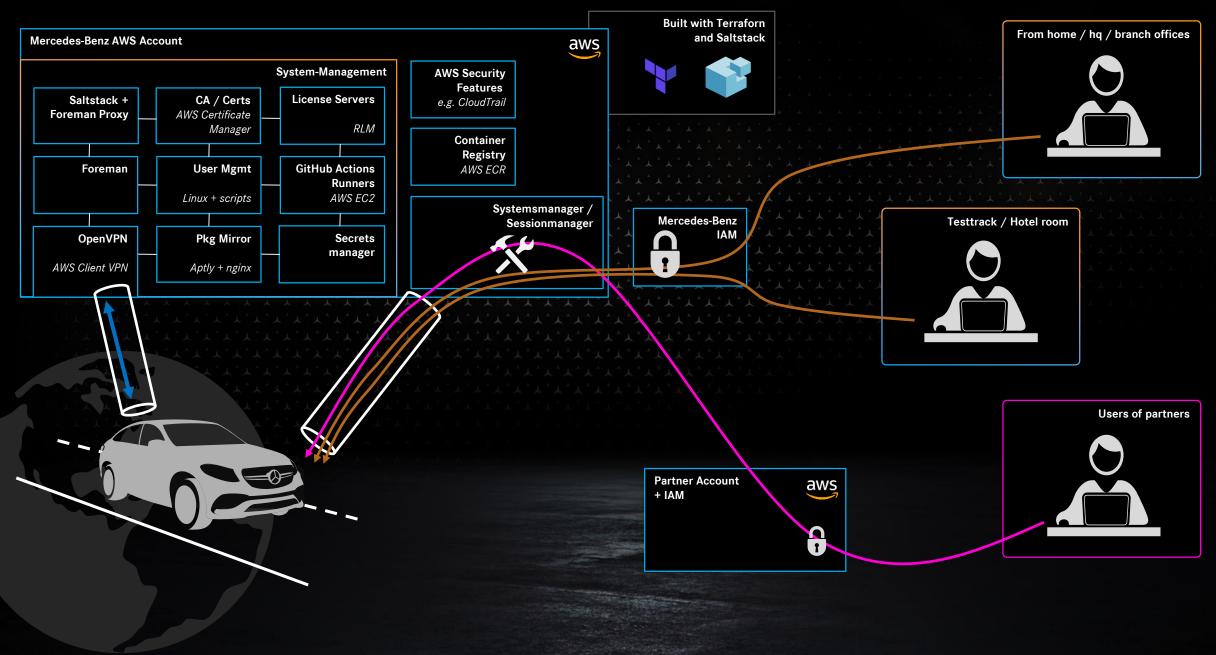
<u>Disadvantages</u>

- Setup and reinstallation only possible in Mercedes-Benz locations
- Limited by VPN connections / bandwidth
- All contributing employees of partners need access to Mercedes-Benz network
- Time consuming processes for onboarding users of 3rd party employees

State of the art cloud approach

Maintaining and managing systems decoupled of corporate network by building everything inside cloud infrastructure but keep parts of IaC client management technology

Disadvantages


Advantages

- Setup and reinstallation from anywhere in the world
- Higher connection throughput
- More agility compared to corporate network
- User management can be shifted to the partners admins

Initial effort for solution design & infrastructure setup in cloud

- Time & effort for Mercedes-Benz internal data protection processes
- Building acceptance on developers that direct ssh to vehicles within the garage is not available

- Prepare system in backend with CLI tool
 - Custom Shell interface providing templates and guided creation of host representation
 - Uses Foreman API to configure and set build-mode

>> no need for user privileges within Foreman

- Boot system with customized Kubuntu install-image
 - Make sure Internet connection is available (Ethernet / Wifi / 5G)
 - Provide access credentials for initial VPN connection

- Full automated install with foreman provided templates
 - Retrieve ubiquity templates from Foreman for automated installation
 - Create device specific VPN certificate using TPM2
 - Bootstrap system for Saltstack
- 1st Reboot
 - Connect to VPN and Saltstack
 - Run initial highstate to apply system configuration

- 2nd Reboot
 - Boot into fully configured system with KDE and smartcard logon
 - Connect to VPN, Amazon SSM and Saltstack

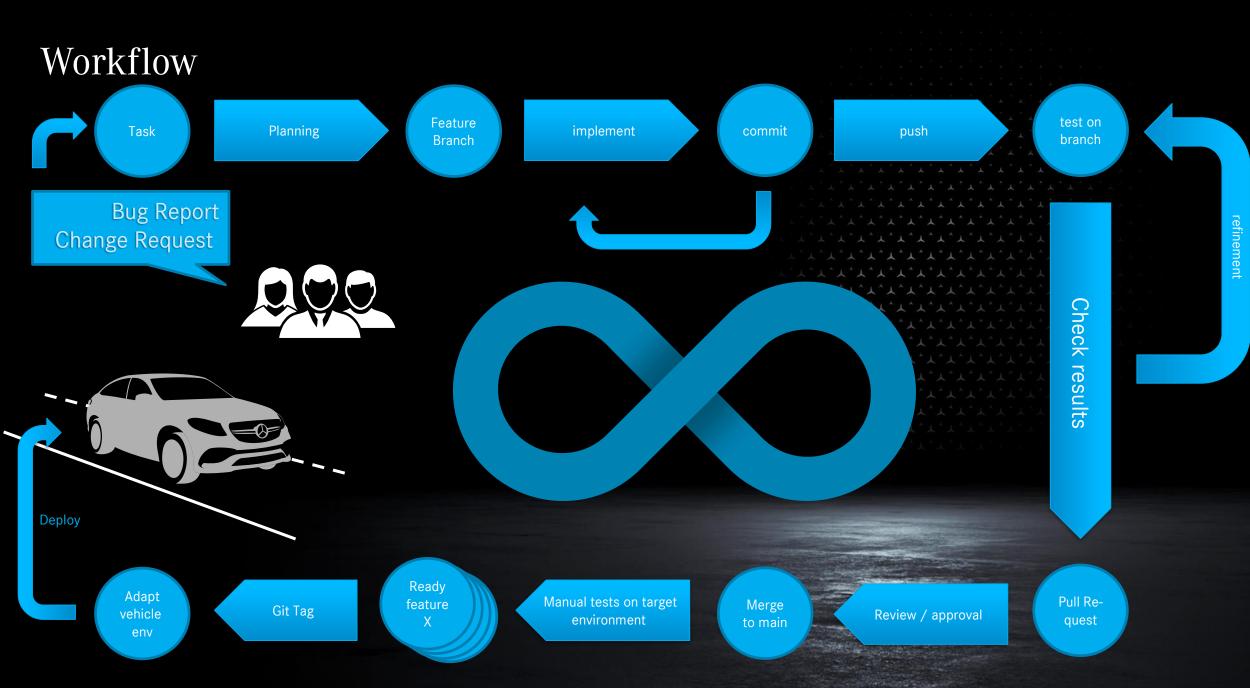
Takes less than 35min in total (45min from US West area)

- Continuous Config deployment using Saltstack
 - Minimal set of configuration states are deployed regularly
 - GitOps Workflow for configuration changes
 - Saltstack gitfs
 - Git-Tags as releases
 - Foreman and Pillarstack/Gitstack as data sources

The GitOps Approach

laC / GitOps

everything lives in git


Tested and approved by process design

 $\begin{array}{c} (\mathbf{x}_{1}^{*}, \mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \mathbf{x}_{2}$

Automation and Integration

via APIs and open interfaces

Continuous Test and Delivery commit & test & deliver fast and reliable

Whats next?

• Ubuntu 22.04 and next generation preparations

Work with overlayfs to ensure clean environment on each boot.

Alternatively

- Automate redeployment even more
 - e.g. redeploy/rescue partition
 >> complete redeployment for each config change

Questions?

Patrick Banholzer

<u>Stefan Bogner</u>

Want to be part of it?

