Stuck in the 70’s?: Sanitize shell script from
the disco era

Stuck in the 70's

Stuck in the 70’s?: Sanitize shell script fromthe discoera 2
Wy Dash? . . 2
Target AUAIENCE . .. 2
Errors, ShmMErrOrs . . oo 3

Sel -0 BITeXit. . oo 3
SeL -0 NOUNSEL . ..o e 3
set -0 pipefail 4
SUMIMANY .o e e e e e 4
Ldodeclare! e e 6
INteger . o e e e 6
REadONIY . . . e e 6
OB A . . o ittt e e e e 6
UP P CaS . . . ot 6
AT Y S o e 6
ASSOCIative Arrays . ..o 7
QUMM AIY oo e e e e e e 7
Operation plus equal. e 8
Integerincrementation e 8
Append t0 STriNg. 8
U] oI (o T 1 - /% 9
SUMIMANY . .ot e e e 9
Substitution Revolution 10
MOdify CaSE . ..ot 10
SUbSHItULION . . . e 10
SUMIMANY . e e e e e e e e 12
(i D) oo 13
MOdify CaSE . ..t 13
SUbSHItULION . . . e 13
SUMIMANY . ot e e e e e 14
Perfect condition 15
Double square brackets. e 15
RegeX COMPaAriSONo 15
QUMM . L e 16
Funky, funky, functions! e 17

Function within functions 17
SUMIMANY . it e e e e e e 18
What the printf? 19
Don't loop, printfl. . .. e 19
Straight lINes . . . 19
SPriNtf @NYONE? . . 20
Escape plan!. 20
What does the clock say? e 20
SUMMIaANY . . e 20
Real World EXamples ™ . .. e 21
The power of read(ing)ottt 21
May the case be withyou 23
Poor man’s Ansible 23

Stuck in the 70’s?: Sanitize shell script from
the disco era

Why bash?

As part of my work I encounter many shell scripts which are poorly written but are essential
for the infrastructure to function properly.

Most of the time the stake holders aren’t sufficiently trained to use a higher level language
such as python, ruby or go.

By introducing modern bash features, the scripts can be maintained by all stake holders
without creating high hurdles for entry.

Many times during my professional career I encountered the magical script written by a former

employee who left years ago. Said script was written in an obscure language that was all the
hype at the time but its star has faded since. No one in the team has the time or is willing to
learn the language, port it to a more common language or they are simply too afraid of
touching the code.

I'm sure many have experienced similar situations. This presentation is an introduction to
modern bash script concepts to help sanitize old shell scripts in need of a bit polish.

Target audience

If you often encounter shell or scripts written in bash and want to learn a few tricks to make
your and your co-worker’s life easier this presentation is for you.

0 A basic understanding of programming in general and shell scripting in
particular is assumed.

Errors, Shmerrors

Shell scripts are amazingly forgiving when it comes to bad coding practices. Virtually every
variable is globally available and can be used without being previously declared.

Further, fatal errors in other languages result in the termination of the script, not so in a
classic shell script. Even after a problem the script jugs along as if everything is dandy.

set -0 errexit

The scripts I usually encounter do not exit on error. With this option set the script is
terminated when an error occurs.

Script without errexit option

#!/usr/bin/env bash

false
echo 'Still alive?' # Still alive?; exit rc O

Script with errexit option

#!/usr/bin/env bash

set -0 errexit

false # exit rc 1
echo 'Still alive?'

To prevent exit on error, append || : after the command.

Prevent exit on error

#!/usr/bin/env bash

set -0 errexit

false ||
echo 'Still alive?' # Still alive?; exit rc O

set -0 nounset

Imagine a scenario where you remove a directory within a script where the last part of the
path is provided by a variable. For one reason or another said variable is not defined and
instead of the target directory you remove a lot more than you bargained for.

rm -rf /home/jdoe/${temp_dir}

But don’t dispair with set -o nounset this can be prevented.

Script without nounset option

#!/usr/bin/env bash

rm -rf /home/jdoe/${temp_dir} # rm -rf /home/jdoe/

Script with nounset option

#!/usr/bin/env bash
set -0 nounset

rm —-rf /home/jdoe/${temp_dir} # bash: temp_dir: unbound variable; exit rc 1

set -0 pipefail

When working with pipes per default only the right most command in the chain is considered
and checked for errors.

With pipefail each command within the pipe construct is evaluted. This is especially useful
for awk commands which generally return and exit status of 0.

Script without pipefail option

#!/usr/bin/env bash

find /fake-dir | awk '{print $1}' # exit rc 0

Script with pipefail option

#!/usr/bin/env bash
set -o pipefail

find /fake-dir | awk '{print $1}' # exit rc 1

Summary

Always use the option triplet errexit, nounset and pipefail in your scripts!

When refactoring an existing script add them first to see how far down the rabbit whole the
journey goes. If the script runs without a hitch the code might not be as bad as assumed.

#!/usr/bin/env bash

set -0 errexit
set -0 nounset
set -o pipefail

To disable the option for a certain block or command use +o instead of -o.

switch off exit on error
set +o0 errexit

false

switch it back on

set -o errexit

The options for errexit and nounset can be written as set -e or set -u

respectively. But I prefer writing them out to help a novice user to better
understand these settings.

I do declare!

Variables in shell scripts are typeless, quite a few popular scripting languages do the same
and are loosely typed. With declare certain attributes can be defined to make a script more
predictable and sometimes cut down on conversion logic.

Integer

Ensure the variable only holds integers.

declare -i int=1

int=string # bash: string: unbound variable
int=2 # declare -i int="2"
Readonly

Define a variable as a constant.

declare -r readonly=set-in-stone

readonly=change # bash: readonly: readonly variable

Lowercase

The content of the variable is converted to lowercase.

declare -1 lower=LOWER

echo ${lower} # lower
e Requires bash >= 4.0
Uppercase

The content of the variable is converted to uppercase.

declare -u upper=upper

echo ${upper} # UPPER

Arrays

The content of the variable is an array.

declare -a array=(1 2 3)

typeset -p array # declare -a array=([0]="1" [1]="2" [2]="3")

array=foo

typeset -p array # declare -a array=([0]="foo" [1]="2" [2]="3")

Associative Arrays

The content of the variable is an associative array.

declare -A hash=([a]=foo [b]=bar)

typeset -p hash # declare -A hash=([b]="bar" [a]="foo")

hash=c

typeset -p hash # declare -A hash=([0]="c" [b]="bar" [a]="foo")

hash+=([c]=fo0)

typeset -p hash # declare -A hash=([c]="foo" [b]="bar" [a]="foo")

o Requires bash >=4.0

Summary

There are few other switches to declare and the certainly can be combined. To create a
readonly array use declare -ra for instance.

Using declare helps narrowing the scope of the values a variable can hold. This makes the
script more predictable!

Operation plus equal

With Bash 3.1 the new assignment operator += was introduced. It makes the previously
cumbersome task of appending or adding content to an already populated variable a lot easier
and DRYer. The following examples show the classical way and the new improved way.

Integer incrementation

There is a few ways incrementing integers in bash but the focus is on the += assignment
operator.

Classical way

counter=0

while true; do
counter="expr ${counter} + 1° # declare -- counter="1"
[...]

done

With += operator

declare -i counter=0

while true; do
counter+=1 # declare -i counter="1"
[...]

done

A Without declaring the variable as an integer the behavior is not as expected.

counter=0

while true; do
counter+=1 # declare -- counter="01"
[...]

done

Append to string

The += assignment operator acts differently when a string is encountered.

Classical way

string="foo"
string="${string}bar" # declare -- string="foobar"

With += operator

declare -- string=foo
string+=bar # declare -- string="foobar"

Push to array

Using the += assignment operator with a list or array pushes a new value into an array.

Classical list

list="foo"
list="¢${list} bar" # declare -- list="foo bar"

With += operator

declare -a list=(foo)
list+=bar # declare -a list=(foo bar)

Summary

The += operator helps with the assignment of existing and brings a bit more comfort to the
previously wordy and often times ugly process of appending or incrementing numbers.

A A -= assignment operator does not exist!

Substitution Revolution

Some may know the classical parameter expansion from Bourne shell such as
${parameter:N,N} or ${parameter:-default} or the ones from Korn shell
${parameter%pattern} or ${parameter#pattern}. But bash has a few of its own. We
look at three of them.

Modify case

There are two basic modes, the first is to convert the case of the first letter. The second is to
convert the whole string.

declare -- to_lower="ALL CAPS"

echo ${to_lower,} # alLL CAPS

echo ${to_lower,,} # all caps

declare -- to_upper="all lower"

echo ${to_upper~r} # All lower
echo ${to_upper/rr} # ALL LOWER

0 Requires bash >= 4.0

There is also the option of only matching a pattern to adjust the case.

declare -- fruits="banana apple pear"

echo ${fruits”a} # banana apple pear
echo ${fruitsA[bp]l} # Banana apple pear
echo ${fruitsrra} # bANAnA Apple peAr
echo ${fruits~+[ae]} # DANANnA ApplE pEAr

e Requires bash >= 4.0

Real world example

if [“echo ${stringl} | tr "[A-Z]" "[a-z]" = "${string2}"]; then

#[...]
fi

With parameter expansion

if [[${stringl,,} == ${string2} 1]; then
[...]
i

Substitution

This one really gets me! I almost never see ${parameter/pattern/} substitutions in the
wild. And is has been around for ages.

Given it is not as powerful as sed but for most use cases it is more than sufficient.

declare -- string="lagoon racoon"
echo ${string/oo/u} # lagun racoon
echo ${string//oo/u} # lagun racun

Real world example

string="1lagoon racoon"
echo ${string} | sed 's/oo/u/g' # lagun racun

With parameter expansion

declare -- string="lagoon racoon"
echo ${string//oo/u} # lagun racun

The script below loops 1000 times and does a string substitution with sed and then via the
bash builtin substitution. The result is quite stunning. The builtin is is factors faster.

Example script letter-substitution.sh

#!/usr/bin/env bash

set -o errexit
set -o nhounset
set -o pipefail

declare -r TITLE="\nSubstitute 'o' for 'u' in string with '%s' a 1000 times\n"
declare -r STRING="lagoon racoon spoon loon"

function sed-loop() {
printf "${TITLE}" 'sed'
for 1 in {0..1000}; do
sed 's/o/u/g' <<< ${STRING} &>/dev/null
done

function builtin-loop() {
printf "${TITLE}" '${var//o/u}’
for i in {0..1000}; do
echo ${STRING//o/u} &>/dev/null
done

time sed-loop
time builtin-loop

Results

$ bash letter-substitution.sh

Substitute 'o' for 'u' in string with 'sed' a 1000 times

real om1.613s @
user Om1.008s
sys Om0.669s

Substitute 'o' for 'u' in string with '${var//o/u}' a 1000 times

real 0m0.020s @
user Om0.020s
sys 0m0.000s

@ sed takes about 8 times longer to complete the job

@® Builtin is blazingly fast as it does not spawns a subshell for every substitution.

Summary

Parameter expansion in shell scripts can be a bit cryptic at first but it is definitely a lot faster
then to run a sub shell for every little change made to a small string.

There are many more expansions available but the examples here are bash specific and won’t
work in the predecessor shells such as Bourne or Korn shell.

(hip hip)

Arrays have been around in bash for quite some time but the encounters in the real world are
few and far between.

Combined with the parameter expansion they become a powerful asset DRYing up a WET
script.

Here a few examples.

Modify case

Combining bash arrays with the upper case parameter expansion is mighty powerful. Let’s see
how it’s done.

declare -a fruit=(banana apple pear)

echo ${fruit[e]”} # Banana Apple Pear
echo ${fruit[@] "} BANANA APPLE PEAR
echo ${fruit[e@]”a} banana Apple pear
echo ${fruit[@]*[bp]l}
echo ${fruit[e]””a}
echo ${fruit[e]”r~[ae]l}

Banana apple Pear
bAnAnA Apple peAr
bAnANA ApplE pEAr

H O ¥ OB

o Requires bash >= 4.0

Substitution

Applying substitution to each element of an array can also be done. Here a few examples.

General substitutions

declare -a array=(lagoon racoon)

echo ${array[@]/o/u} # laguon racuon
echo ${array[@]//o/u} # laguun racuun
Prefix substitutions

declare -a sshopts=(BatchMode=yes User=foobar)
echo ${sshopts[@e]/#/-o0 } # -0 BatchMode=yes -o User=foobar

Append suffix

declare -a fruits=(banana apple pear)
echo ${fruits[@]/%/,} # banana, apple, pear,

Remove suffix

declare -a fruits=(bananas apples pears)
echo ${fruits[e]/%s/} # banana apple pear

Summary

Parameter expansion combined with bash arrays allows to make volatile changes to a list of
values at the time of echoing. No sed, tr and awk constructs and excessive looping are
required.

Perfect condition

Conditional statements in classical shell script have a few shortcomings. For backward
compatibility bash understands the single brackets [..] but are a couple more ways to
enclose conditional statements.

Let’s dive in.

Double square brackets

Double square brackets are more forgiving when it comes to dealing with empty strings in a
comparison.

Classical shell script condition

foo=
[${foo} = foo] # bash: [: =: unary operator expected

Effectively the above conditional statement is expanded as [= foo] because the variable
foo is empty. There are two common ways to prevent the error:

Classical shell script condition workaround

foo=
["${foo}" = "foo"] # exit rc 1
[x${foo} = xfoo] # exit rc 1

Korn shell introduced the more robusts [[which does not suffer the same limitations.

Korn shell style double square brackets

declare -- foo=
[[${foo} == foo 1] # exit rc 1

Korn was initially released in 1983. bash and zsh among other shells adapted the double
square bracket style conditionals. Still to this day there I mostly encounter single square
brackets all over the place. Hence the question "Are we stuck in the 70’s?".

And while the double square brackets are not POSIx compliant, does it really matter if you are
writing a bash script?

Regex comparison

Bash has also a regex operator =~ for matching strings. This often overlooked feature can save
you lots of typing.

More importantly string comparisons within bash are more performant as no sub shell is
required for the comparison.

Classical shell string match

string=foobar

if echo ${string} | grep -gq '[Bblar'; then
[...]

fi

Bash style regex

declare -- string=foobar
if [[${string} =~ [Bblar]]; then
[... 1]
fi
Summary

These are but a few small examples creating "perfect conditions" for your bash scripts.
Although they are not POSIX compatible the fact that ksh, zsh and bash among other
implement them makes them virtually portable.

Funky, funky, functions!

Function names are quite restrictive in many languages. For instance minuses - are not
permitted or special characters can not be used.

While this is true for traditional shell scripts as well Bash has more relaxed rules.

Let’s dive in!

Special characters

With the exception of a few reserved characters such as $, |, (and { among others pretty
much everything else works.

function @() { echo '@'; }

@ # @
function /() { echo '/'; }
/ #/
function -() { echo '-'; }
— #_
function :() { echo '":'; }

#

function U() { echo 'G'; }
U # U

This opens possibilities of creating prefixes or fake namespaces for functions. Pretty useful for
sourced files and libraries.

Functions with faux namespaces

function funky() {

[... 1]
3
function test::funky() {
#[... 1]
}
funky # execute funky
test::funky # test funky function

Function within functions

It it is even possible to place functions within functions. Unfortunately there they are still
accessible globally.

There is a use case for this scenario which we get to later. But with the 1ocal keyword the
scope can be limited.

function parent() {
function @child() {
#[... 1]
3
@child
#[...]
@child

Summary

Surprisingly bash functions can be creatively named and have fewer restrictions than most
other scripting languages. Caution is advised when using special characters tho. I don’t think
many bash scripters use them.

What the printf?

The builtin printf function comes with a few differences compared to the ones found in the
common scripting languages.

Here we have a look how we can use printf a log smarter!

Don’t loop, printf!

The bash printf can be used instead of a loop for printing as it prints each additional
argument not unlike a loop.

Print fruit loop :)

declare -a fruit=(banana apple pear)
for f in ${fruit[@]}; do echo ${f}; done # banana\napple\npear

Printf it!

declare -a fruit=(banana apple pear)
printf "%s\n" "${fruit[e@]}" # banana\napple\npear

Straight lines

Don’t manually write out lines use printf!

printf "%0.1s" -{1..16} # oo

Packing the above into a function and calling it ----- can make the source code more
readable but probably confuses the casual code reviewer.

Example script pretty-lines.sh

#!/usr/bin/env bash

function —----- O A
printf "%0.1s" -{1..16} $'\n'

echo "Title"

Result

$ bash pretty-lines.sh

sprintf anyone?

One can even emulate the sprintf function by using the -v switch.

printf -v line "%0.1s" -{1..16}
echo ${line} 2 commoomoooooooos

0 Requires bash >= 3.1

Escape plan!

With the %q placeholder printf provides a shell escaping routine.

printf "%q" 'cat foo | grep "foo bar"'
cat\ foo\ \|\ grep\ \"foo\ bar\"

What does the clock say?

Use printf instead of the date command to convert an Unix epoch timestamp to a human

readable format.

printf "%(%Y-%m-%d)T\n" 1515151515
2018-01-05

o Requires bash >= 4.2

Summary

IMHO, one of most underused builtin in bash scripts is printf. It is very versatile and can help

reduce code and complexity if used appropriately.

Real World Examples ™

A few examples on how to reduce clutter with examples taken from the Real World ™.

The power of read(ing)

Expensive parsing and splitting with awk

info="Joe:Doe:Sysadmin"

fname="echo ${info} | awk -F : '{ print $1 }'~ # Joe

lname="echo ${info} | awk -F : '{ print $2 }'° # Doe

role="echo ${info} | awk -F : '{ print $3 }'° # Sysadmin
read with IFS

declare -- info="Joe:Doe:Sysadmin"

IFS=: read fname lname role <<< "${info}"

The same but read everything into an array.

read into array

declare -- info="Joe:Doe:Sysadmin"
IFS=: read -a person <<< "${info}"

typeset -p person # declare -a person=([0]="Joe" [1]="Doe" [2]="Sysadmin'")

Splitting field separated data into variables is usually down with awk in shell scripts. And awk
is superb tools when working on large data sets. However simply splitting into shell variables
is a performance killer!

Example script read-1ist.sh

#!/usr/bin/env bash

set -0 errexit
set -0 nounset
set -o pipefail

declare -r TITLE="\nSplit string to variables with '%s' a 100 times\n"
declare -r LIST="root:TOpS3cr3t!:0:0:root:/root:/bin/bash"

function awk-loop() {

printf "${TITLE}" 'awk -F : ...’

for i in {0..100}; do
login=$(echo ${LIST} | awk -F : '{ print $1 }')
pw=$(echo ${LIST} | awk -F : '{ print $2 }')
uid=$(echo ${LIST} | awk -F : '{ print $3 }')
gid=$(echo ${LIST} | awk -F : '{ print $4 }')
gecos=%$(echo ${LIST} | awk -F : '{ print $5 }')

home=$(echo ${LIST} | awk -F : '{ print $6 }')
shell=$(echo ${LIST} | awk -F : '{ print $7 }')
done

function read-loop() {
printf "${TITLE}" 'IFS=: read ...'
for i in {0..100}; do
IFS=: read login pw uid gid gecos home shell <<< "${LIST}"
done

time awk-loop
time read-loop

$ bash read-list.sh

Split string to variables with 'awk -F : ...' a 100 times
real omi1.162s @

user Om1.086s

sys 0mo0.293s

Split string to variables with 'IFS=: read ...' a 100 times
real 0m0.002s @

user Om0.001s

sys 0m0.002s

@ Splitting with awk is about 580 times slower! Although there are only 100 iterations awk is
called 700 times.

@ Barely noticeable the time used with the builtin.

May the case be with you

Too WET to maintain

if [${host} = jp-prod]; then
prod_host ${host}

elif [${host} = ch-prod]; then
prod_host ${host}

elif [${host} = jp-uat]; then
uat_host ${host}

#0 ...]
else

dev_host ${host}
fi

Better with case

case ${host} in
*-prod) prod_host ${host};;
*—uat) uat_host ${host};;
*) dev_host ${host};;
esac

Poor man’s Ansible

Execute a locally defined function on a remote machine without first copying the code.

function bootstrap() { config_host; hostname; }

ssh ch-dev.acme.com "$(declare -f bootstrap); bootstrap"

It is hard to imagine something concrete with the above example hence a small example to
show how it works. In the below example the script is adding a new SSH public key to the
target user’s authorized_keys file. But only if the key is not already existing.

Example script rex-add_ssh_key.sh

#!/usr/bin/env bash

function add_ssh_key() {
set -o errexit
set -0 nounset
set -o pipefail

declare -r SSH_TYPE=${1}; shift;

declare -r SSH_KEY=%${1}; shift;

declare -r SSH_COMMENT=${1}; shift;

declare -r AUTH_KEYS=${HOME}/.ssh/authorized_keys

function key_already_in_place() {
grep -q ${SSH_KEY} ${AUTH_KEYS}

function add_key() {

key_already_in_place && {
echo "Key already exists in ${AUTH_KEYS}";
return 0;

b

printf "%s %s %s\n" \
${SSH_TYPE} \
${SSH_KEY} \
${SSH_COMMENT} \
>> ${AUTH_KEYS}

echo "Key successfully added to ${AUTH_KEYS}"

3
add_key

ssh localhost \
"$(declare -f add_ssh_key);" \
"add_ssh_key ssh-ed25519 AAAAC3N..7mG testkey"

Results from running above script

$ bash rex-add_ssh_key.sh
Key succesfully added to /home/test/.ssh/authorized keys @

$ bash rex-add_ssh_key.sh
Key already exists in /home/test/.ssh/authorized_keys @

@ Running the first time the key is added

@ Running the second time the key is already present and no action is taken.

	Stuck in the 70’s?: Sanitize shell script from the disco era
	Stuck in the 70’s
	Stuck in the 70’s?: Sanitize shell script from the disco era
	Why bash?
	Target audience
	Errors, Shmerrors
	set -o errexit
	set -o nounset
	set -o pipefail
	Summary

	I do declare!
	Integer
	Readonly
	Lowercase
	Uppercase
	Arrays
	Associative Arrays
	Summary

	Operation plus equal
	Integer incrementation
	Append to string
	Push to array
	Summary

	Substitution Revolution
	Modify case
	Substitution
	Summary

	(hip hip)
	Modify case
	Substitution
	Summary

	Perfect condition
	Double square brackets
	Regex comparison
	Summary

	Funky, funky, functions!
	Special characters
	Function within functions
	Summary

	What the printf?
	Don’t loop, printf!
	Straight lines
	sprintf anyone?
	Escape plan!
	What does the clock say?
	Summary

	Real World Examples ™
	The power of read(ing)
	May the case be with you
	Poor man’s Ansible

