
Evolution of a Microservice Infrastructure
Paul Puschmann

OSAD 2019, Munich

2

What do we actually run?

SetupCurrent

We’re operating a custom Docker-Environment consisting of:

Recap
The state of 2018

We’re operating a custom Docker-Environment consisting of:

Everything was cool. Developers can bring Code live. All is well.

Recap
The state of 2018

runs

One repository for infrastructure-configuration

Ansible, Vagrant, Terraform, … executed via Jenkins.

… and looks like this
for infrastructure provisioning

docker-host

consul-Server

ingress-server

...

configures

… and works like this
for deployment of services

One central repository for service-deployments

● Used on every Team-Jenkins as external resource

● Teams provide a “service-descriptor.yaml” for each service

● “service-descriptor.yaml” gets updated with environment-specific variables

● containers get started with environment of “service-descriptor.yaml”

● standardised deployment is ensured

service_name: "example"

service_version: "1.2.1"

squad: "Example-Squad"

team: "Example-Team"

num_instances: 3

prometheus_enabled: "true"

prometheus_path: "/metrics/prometheus"

service_memory: 1536

service_configuration:

 JAVA_META_SIZE_TO_HEAP_QUOTA: 40

 # Example DB

 DATASOURCES_SHOP_JDBCURL: "jdbc:postgresql://{{ psql_cluster_master }}:5432/{{ db_name_example }}"

 DATASOURCES_SHOP_USERNAME: "{{ db_user_example }}"

 DATASOURCES_SHOP_PASSWORD: "{{ db_password_example }}"

 ...

Example

We’re operating a custom Docker-Environment consisting of:

Everything was cool. Developers can bring Code live. All is well.

Recap
The state of 2018

All is fine

Photo by Perfecto Capucine from Pexels

https://www.pexels.com/@perfecto-capucine-515848?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://www.pexels.com/photo/black-amazon-kindle-tablet-near-brown-drawstring-sun-hat-1247526/?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels

… and looks like

Ingress-Nodes

Consul-Server
a.k.a

Master-Nodes

Docker-Hosts
a.k.a.

Worker-Nodes

Other “aaS”

* nS1 S1

S2 S2 S1

S1S1

S2

Customer

… and looks like

Ingress-Nodes
● Nginx-config written by

consul-template on

change of

Consul-information

● Routes external

Hostnames

Other “aaS”

* nS1 S1

S2 S2 S1

S1S1

S2

Customer

Ingress-Nodes

Consul-Server
a.k.a

Master-Nodes

Docker-Hosts
a.k.a.

Worker-Nodes

… and looks like

Other “aaS”

* nS1 S1

S2 S2 S1

S1S1

S2

Docker-Host
● Nginx-config written by

consul-template on

change of

Consul-information

● Routes internal

Hostnames to containers

● Runs containers

Customer

Ingress-Nodes

Consul-Server
a.k.a

Master-Nodes

Docker-Hosts
a.k.a.

Worker-Nodes

… and looks like

Other “aaS”

* nS1 S1

S2 S2 S1

S1S1

S2

Consul-Server & Swarm-Master
● Contain knowledge of all

services

● Deployments are started

from here

● Act as DNS-Servers for

service-discovery

Customer

Ingress-Nodes

Consul-Server
a.k.a

Master-Nodes

Docker-Hosts
a.k.a.

Worker-Nodes

… and looks like

Other “aaS”

* n

Other centrally managed
“platform-services”
● Kafka

● Databases

● ELK-Stack

● Prometheus & Grafana

● ...

S1 S1

S2 S2 S1

S1S1

S2

Customer

Ingress-Nodes

Consul-Server
a.k.a

Master-Nodes

Docker-Hosts
a.k.a.

Worker-Nodes

● Both colors have the same DNS record

○ Consul will return IPs for all hosts where the Service is running

● Nginx running on each Worker Node

○ routes to colour depending on used port

Request routing
how can services be addressed

ProblemsRouting

● There are requests which never reached their destination

 Always happened at the time of deployments

Problems with Nginx
increased with the size of the environment

… and looks like

Ingress-Nodes

Consul-Server
a.k.a

Master-Nodes

Docker-Hosts
a.k.a.

Worker-Nodes

Other “aaS”

* nS1 S1

S2 S2 S1

S1S1

S2

Customer

● There are requests which never reached their destination

● Always happened at the time of deployments

● Consul-template would reload all Nginx instances

at the same time

● What happens at a reload?

Problems with Nginx
increased with the size of the environment

Look for different reverse proxy

● No reload on config change (optional)

● Dynamic configuration (optional)

● Robust connections to the client

Problems with Nginx
looking for solutions

Problems with Nginx
possible replacements

● Dynamically configurable

● Live reloading of configuration

● Lots of metrics

● Nice web ui

● Single Go binary

Since Traefik 2.x:

● independent configuration of frontend & backend

○ mix consul service-discovery with file-based configuration

Traefik

Traefik

1. Install alongside Nginx on Worker and Ingress Nodes

○ listen on different ports

2. Check that configured routes are correct and work

3. Change port mapping host by host -> Traefik is active

4. Remove Nginx

Traefik
how to migrate

Traefik
how to migrate

:80 :10080

docker-1

basket

some service

Traefik
how to migrate

:80 :10080

docker-1

basket

some service

Traefik
how to migrate

:80

docker-1

basket

some service

● Keepalive and connection problems immediately went away

● Almost real time data about service response time

● Web UI to check routes

● Rich access logs

Traefik
Benefits

Traefik
Benefits

Traefik
Benefits

ProblemsContainer

● Poor container spread

○ all service instances running on one host

● No self healing

● Manual node draining (e.g. for maintenance)

○ we’re still dependent on docker-compose files

● Only few metrics

Problems with standalone Swarm
also increased increased with increasing workload

Swarm...

Ingress-Nodes

Consul-Server
&

Docker-Swarm
master

Docker-Hosts
a.k.a.

Worker-Nodes

Other “aaS”

* nS2 S2

S2 S1 S1

S1S1

S2

Customer

● self healing

● proper container spread

● metrics

● resource limits (optional)

● stateless docker-host

We want this

Possible replacements

● Seamless Consul integration

○ almost no setup needed

● Self healing

● Bin packing

● Single Go binary

● Nice Web UI

● (Memory) Limits enforced by default

● Token-based ACL

Nomad

● Not limited to Docker

○ Rkt and LXC

● Not limited to Containers

○ Jar files

○ Binaries

○ VMs

Nomad
Benefits

Swarm...

Ingress-Nodes

Consul-Server
&

Nomad-Server

Docker-Hosts
a.k.a.

Nomad-Clients

Other “aaS”

* nS2 S2

S2 S1 S1

S1S1

S2

Customer

Nomad
Benefits

Nomad
Benefits - Cluster Level

Nomad
Benefits - Cluster Level

Nomad
Benefits - Service Level

Nomad
Benefits

We’re operating a custom Docker-Environment consisting of:

State of 2019

State of 2019
And we’re also using

What we Learned

● Having a centralised deployment-toolset

○ perform all changes for all teams / developers at the same time

● Do Canary-like changes on our infrastructure

○ fully interoperable changes

○ Nginx <-> Traefik

What helped us most?

● Distributed systems can be hard

● Keeping your architecture pluggable helps a lot

● Computing resources can be finite

○ Enforcing resource limits can be interesting

● You might not need Kubernetes...

What did we learn?

Thank You!

www.rewe-digital.com

All background photos are licensed under CC0. Source: pexels.com

Evolution of a Microservice Infrastructure
OSAD 2019, Munich

@rewedigitaltech

 @ppuschmannPaul Puschmann

https://creativecommons.org/publicdomain/zero/1.0/
http://pexels.com

