
@nicolas_frankel

Istio vs. Hystrix/Resilience4J

Battle of the Circuit Breakers

@nicolas_frankel

• Developer Advocate
• Developer/Architect for 17 years

• DevOps and Cloud curious

Me, myself and I

@nicolas_frankel

Hazelcast

HAZELCAST IMDG is an operational,

in-memory, distributed computing

platform that manages data using

in-memory storage, and performs

parallel execution for breakthrough

application speed and scale.

HAZELCAST JET is the ultra fast,

application embeddable, 3rd

generation stream processing

engine for low latency batch

and stream processing.

@nicolas_frankel

• Some introduction

• The problem

• The circuit-breaker pattern

• Istio implementation

• Hystrix implementation

• Demo

Agenda

@nicolas_frankel

• Componentization via Services

• Smart endpoints and dumb pipes

• Decentralized Governance

• Decentralized Data Management

• Infrastructure Automation

• Design for failure

• Evolutionary Design

• Organized around Business Capabilities

• Products not Projects

µservice: a tentative definition

h
tt
p
s:
//
m
a
rt
in
fo
w
le
r.
co
m
/a
rt
ic
le
s/
m
ic
ro
se
rv
ic
e
s.
h
tm

l

@nicolas_frankel

• Componentization via Services

• Smart endpoints and dumb pipes

• Decentralized Governance

• Decentralized Data Management

• Infrastructure Automation

• Design for failure

• Evolutionary Design

• Organized around Business Capabilities

• Products not Projects

µservice: a tentative definition

h
tt
p
s:
//
m
a
rt
in
fo
w
le
r.
co
m
/a
rt
ic
le
s/
m
ic
ro
se
rv
ic
e
s.
h
tm

l

@nicolas_frankel

• Microservices are an
organizational solution to an
organizational problem

• They are ill-adapted to most orgs

Word of warning

h
tt
p
s:
//
m
a
rt
in
fo
w
le
r.
co
m
/b
li
k
i/
M
ic
ro
se
rv
ic
e
P
re
re
q
u
is
it
e
s.
h
tm

l

@nicolas_frankel

"organizations which design systems
... are constrained to produce
designs which are copies of the
communication structures of these
organizations."

Conway’s Law

@
n

ico
la

s_
fra

n
k

e
l

https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/

@
n

ico
la

s_
fra

n
k

e
l

https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/

@nicolas_frankel

“I see you have a poorly structured
monolith. Would you like me to
convert it into a poorly structured set
of microservices?”

Rant of the day

https://twitter.com/architectclippy/status/570025079825764352

@nicolas_frankel

Webservice, not microservice

Semantics!

@nicolas_frankel

• “Anything that can go wrong will go
wrong”

• Apply that to webservices
architecture

Reminder: Murphys’s law

@nicolas_frankel

@nicolas_frankel

• The network is reliable

• Latency is zero
• Bandwidth is infinite

• The network is secure

• Topology doesn't change
• There is one administrator

• Transport cost is zero
• The network is homogeneous

Reminder: Fallacies of distributed
computing

h
tt
p
s:
//
yo
u
rl
o
g
ic
a
lf
a
lla
cy
is
.c
o
m
/

@nicolas_frankel

• The network is reliable

• Latency is zero
• Bandwidth is infinite

• The network is secure

• Topology doesn't change
• There is one administrator

• Transport cost is zero
• The network is homogeneous

Reminder: Fallacies of distributed
computing

h
tt
p
s:
//
yo
u
rl
o
g
ic
a
lf
a
lla
cy
is
.c
o
m
/

@nicolas_frankel

A sample webservice architecture

F B

C1

C2

@nicolas_frankel

A sample webservice architecture

F B

C1

C2

@nicolas_frankel

A sample webservice architecture

F B

C1

C2

@nicolas_frankel

A sample webservice architecture

F B

C1

C2

@nicolas_frankel

A sample webservice architecture

F B

C1

C2

@nicolas_frankel

“A service client should invoke a remote service via a

proxy that functions in a similar fashion to an electrical

circuit breaker.”

https://microservices.io/patterns/reliability/circuit-breaker.html

Enter the Circuit Breaker pattern

@nicolas_frankel

Circuit Breaker state machine

@nicolas_frankel

• Number of failed calls

• Elapsed time strategy:
• Fixed
• Doubling
• Something else

• Number of successful calls

Configuration options

@nicolas_frankel

What to do in the case of timeout?

The most important configuration
option

@nicolas_frankel

1. Recommendation webservice
• “People also bought xyz”

2. Pricing webservice

3. Payment webservice

4. Logging webservice

Use-case: e-commerce webshop

@nicolas_frankel

• Fire-and-forget

• Asynchronous calls

Logging

@nicolas_frankel

• Synchronous req/response

• Optional

• Fallback options
• Display no recommendations
• Static recommendations set

Recommendation

@nicolas_frankel

• Synchronous req/response

• Required
• But better sell at a slightly

outdated price!

• Fallback options
• Accept outdated data from

another source
• In-memory cache

Pricing

@nicolas_frankel

• Synchronous req/response

• Required

• Fallback options

• Accept potentially bad payments 🤔

Payment

@nicolas_frankel

Available strategies

Strategy Implementations Fits

Black Box ● Proxies

● Service meshes

Fail fast

White Box Libraries

● Hystrix

● Resilience4J

Fallbacks relying

on business logic

@nicolas_frankel

“A service mesh is a configurable infrastructure
layer for a microservices application. It makes
communication between service instances flexible,
reliable, and fast. The mesh provides service
discovery, load balancing, encryption,
authentication and authorization, support for the
circuit breaker pattern, and other capabilities.”

https://www.nginx.com/blog/what-is-a-service-mesh/

Service mesh

@nicolas_frankel

• Open Source service mesh

• Leverages Kubernetes

• Implements the sidecar pattern

• Uses the Envoy proxy under the
hood

Istio

@nicolas_frankel

Sidecar pattern

@nicolas_frankel

Istio from a birds-eye view

https://istio.io/docs/concepts/what-is-istio/

@nicolas_frankel

apiVersion: networking.istio.io/v1alpha3

kind: DestinationRule

metadata:

name: foo

spec:

host: foo

trafficPolicy:

outlierDetection:

consecutiveErrors: 3

interval: 10s

baseEjectionTime: 1m

maxEjectionPercent: 80

Circuit-breaker configuration in Istio

Number of consecutive errors that open the circuit breaker

Interval between two checks

Duration of opening

Percentage of evicted instances

@nicolas_frankel

• No fallback

Cons of Istio

@nicolas_frankel

A talk in which you’re the hero!

Go to slide 39 Go to slide 44

@nicolas_frankel

“Hystrix is a latency and fault tolerance
library designed to isolate points of access
to remote systems, services and 3rd party
libraries, stop cascading failure and enable
resilience in complex distributed systems
where failure is inevitable.”

Hystrix

@nicolas_frankel

• Provided by Netflix

• Currently in maintenance mode ⚠

• Superseded by Resilience4J
• But not equivalent

Hystrix

@nicolas_frankel

• Wraps calls into “commands”

• Run commands asynchronously
from a thread pool

• Measure success/failures

• Circuit-breaker implementation

• Fallback logic

Hystrix features

@nicolas_frankel

• A lot of configuration options
• Hard to fine-tune

• No big picture

Cons of Hystrix

@nicolas_frankel

• Easy Hystrix integration

• Also:
• Service discovery: Eureka
• Declarative REST client: Feign
• Client-side LB: Ribbon
• etc.

Spring Cloud Netflix

@nicolas_frankel

“Resilience4j is a lightweight fault
tolerance library inspired by Netflix
Hystrix, but designed for Java 8 and
functional programming.”

Resilience4J

@nicolas_frankel

• Circuit Breaker

• Rate Limiter

• Retry

• Cache

• etc.

Resilience4J’s features

@nicolas_frankel

• Each feature is designed as a
function

• Uses Java 8 functional interfaces
• e.g. Supplier

• Based on function composition

• Based on Vavr
• Functional Programming in Java

Resilience4J’s design principles

@nicolas_frankel

• Need to be very familiar with
Functional Programming

• No big picture

Cons of Resilience4J

@nicolas_frankel

Time for D
EM

O

@nicolas_frankel

• https://blog.frankel.ch/

• @nicolas_frankel

• https://git.io/JenH9

Thanks

