Istio vs. Hystrix/Resilience4J

y @nicolas_frankel

> Me, myself and |

- Developer Advocate
« Developer/Architect for 17 years

- DevOps and Cloud curious

y @nicolas_frankel 2 hazelcast

> Hazelcast

0000

0000

0000

0000
HAZELCAST IMDG is an operational, HAZELCAST JET is the ultra fast,
in-memory, distributed computing application embeddable, 3rd
platform that manages data using generation stream processing
in-memory storage, and performs engine for low latency batch
parallel execution for breakthrough and stream processing.

application speed and scale.

y @nicolas_frankel

= hazelcast

> Agenda

Some introduction

The problem

The circuit-breaker pattern
- Istio implementation

- Hystrix implementation

- Demo

y @nicolas_Ffrankel l. hazelcast

> yservice: a tentative definition

Componentization via Services
Smart endpoints and dumb pipes
Decentralized Governance
Decentralized Data Management
nfrastructure Automation

Design for failure

Evolutionary Design
Organized around Business Capabilities

Products not Projects

y @nicolas_frankel

§: hazelcast

> yservice: a tentative definition

’ . - : .
L "" - - ,.
on ’ . ‘

-ﬁ_
Organized around Business Capabilities K ;

Products not Projects I‘* \
y @nicolas_frankel

> Word of warning

- Microservices are an You must be
organizational solution to an this tall to use
. . microservices
organizational problem |

- They are ill-adapted to most orgs |

2 hazelcast

> Conway's Law

"organizations which design systems
... are constrained to produce
designs which are copies of the
communication structures of these
organizations."

y @nicolas_frankel 2 hazelcast

Product team using microservices

Platform team

—
A
Product team using microservices P
_

Product team using microservices —

Prod DB Sys Net SAN
Mgr UK Dev QA Admin Admin Admin Admin

(@nicolas_Ffrankel -l hazelcast

Prod DB Sys Net SAN
Mgr UX Dev QA Admin Admin Admin Admin

‘ @nicolas_Ffrankel -l hazelcast

> Rant of the day

“| see you have a poorly structured
monolith. Would you like me to
convert it into a poorly structured set
of microservices?”

https://twitter.com/architectclippy/status/570025079825/64352

y @nicolas_Ffrankel l. hazelcast

ICS

> Semant

)
—
=
C
b
Vp)
@)
r
—

Not Mi

I

ICE

Webserv

dd
0
O

A=
),
N
(0

L

a
-

)
Y4
c
1Y)
—
w
(%)
9
®)
i

> Reminder: Murphys'’s law

» “Anything that can go wrong will go
wrong”

- Apply that to webservices
architecture

y @nicolas_frankel 2 hazelcast

§: hazelcast

> Reminder: Fallacies of distributed
computing

The network is reliable
Latency is zero i
Bandwidth is infinite

‘he network is secure
‘opology doesn't change
‘here is one administrator
‘ransport cost is zero

'he network is homogeneous

y @nicolas_frankel 2 hazelcast

> Reminder: Fallacies of distributed
computing

The network is reliable
Latency is zero

Bandwidth is infinite

‘he network is secure
‘opology doesn't change
‘here is one administrator
‘ransport cost is zero

'he network is homogeneous

y @nicolas_frankel 2 hazelcast

> A sample webservice architecture

L,

= hazelcast

> A sample webservice architecture

e F B
= D

y @nicolas_frankel

= hazelcast

> A sample webservice architecture

e F
=

= hazelcast

y @nicolas_frankel

> A sample webservice architecture

y @nicolas_frankel

B

§: hazelcast

> A sample webservice architecture

= hazelcast

y @nicolas_frankel

> Enter the Circuit Breaker pattern

“A service client should invoke a remote service via a
proxy that functions in a similar fashion to an electrical
circuit breaker.”

§: hazelcast

> Circuit Breaker state machine

(Open w

Fails fast

i fails
| 'Me and reached
=l|pses threshold

succeeds
HaIf-Openw again)(Closed) succeeds or
JD fails but threshold

kMakes calls J kMakes calls not reached

y @nicolas_Ffrankel l. hazelcast

> Configuration options

« Number of failed calls

- Elapsed time strategy:

« Fixed
« Doubling
« Something else

« Number of successful calls

y @nicolas_frankel 2 hazelcast

> The most important configuration
option

What to do in the case of timeout?

g i ‘
y @nicolas_frankel 2 hazelcast

> Use-case: e-commerce webshop

1. Recommendation webservice
- “People also bought xyz"

2. Pricing webservice

3. Payment webservice

4. Logging webservice

y @nicolas_frankel

§: hazelcast

> Logging

- Fire-and-forget
» Asynchronous calls

y @nicolas_frankel I: hazelcast

> Recommendation

- Synchronous reqg/response
- Optional

- Fallback options

« Display no recommendations
e Staticrecommendations set

y @nicolas_frankel

§: hazelcast

> Pricing

. Synchronous reqg/response
.- Required

But better sell at a slightly
outdated price!

- Fallback options

Accept outdated data from
another source
In-memory cache

y @nicolas_frankel 2 hazelcast

> Payment

- Synchronous reg/response
- Required

- Fallback options

« Accept potentially bad payments @

y @nicolas_frankel

§: hazelcast

> Available strategies

Strategy Implementations Fits
Black Box e Proxies Fail fast
e Service meshes
White Box |Libraries Fallbacks relying
o Hystrix on business logic
e Resilience4)

y @nicolas_frankel

§: hazelcast

> Service mesh

“A service mesh is a configurable infrastructure
layer for a microservices application. It makes
communication between service instances flexible,
reliable, and fast. The mesh provides service
discovery, load balancing, encryption,
authentication and authorization, support for the
circuit breaker pattern, and other capabilities.”

y @nicolas_Ffrankel '. hazelcast

> Istio

Open Source service mesh
- Leverages Kubernetes
- Implements the sidecar pattern

- Uses the Envoy proxy under the
nood

y @nicolas_frankel 2 hazelcast

> Sidecar pattern . &

§: hazelcast

> Istio from a birds-eye view

y @nicolas_frankel

@ Service A @ Service B

HTTP/1.1, HTTP/2,
gRPC or TCP -
with or without
mTLS
O Proxy > O Proxy
[\

4

_ Policy checks, L
“+. telemetry | -°

kv}
@ Mixe

Control Plane API

§: hazelcast

> Circuit-breaker configuration in Istio

apiVersion: networking.istio.io/vlalpha3
kind: DestinationRule
metadata:
name: foo
spec:
host: foo
trafficPolicy: Numher of eancecutive errors that open the circuit breaker

outlierDetection
Interval betarean twin charle

consecutiveErr -
]]
interval: 10s — |

baseEjectionTime: 1m =
maxEjectionPercent: 80

y @nicolas_frankel

Percentage of evicted instances

——

= hazelcast

> Cons of Istio

« No fallback

y @nicolas_Ffrankel '. hazelcast

> A talk in which you're the hero!

_ %\\\\\\\\mnu///////

S& Z
/ //'/ N \\\ .
ARSI

Go to slide 39

y @nicolas_frankel

(2N
@ O

e’

Go toslide 44

= hazelcast

>

Hystrix

“Hystrix is a latency and fault tolerance
library designed to isolate points of access
to remote systems, services and 3rd party
libraries, stop cascading failure and enable
resilience in complex distributed systems
where failure is inevitable.”

y @nicolas_frankel

§: hazelcast

> Hystrix

- Provided by Netflix
- Currently in maintenance mode /!
- Superseded by Resilience4]

« But not equivalent

§: hazelcast

> Hystrix features

- Wraps calls into “commands”

- Run commands asynchronously
from a thread pool

- Measure success/failures
- Circuit-breaker implementation
- Fallback logic

y @nicolas_frankel

§: hazelcast

> Cons of Hystrix

- Alot of configuration options
e Hard to fine-tune

- No big picture

y @nicolas_Ffrankel '. hazelcast

> Spring Cloud Netflix

« Easy Hystrix integration

« Also:

Service discovery: Eureka
Declarative REST client: Feign
Client-side LB: Ribbon

etc.

’ @nicolas_frankel 2 hazelcast

> Resilience4)

“Resiliencedj is a lightweight fault
tolerance library inspired by Netflix
Hystrix, but designed for Java 8 and
functional programming.”

~ N

@ O

o’

= hazelcast

> Resilience4J’s features

« Circuit Breaker
- Rate Limiter

- Retry

- Cache

- etc.

= hazelcast

> Resilience4J’s design principles

- Each feature is designed as a
function

- Uses Java 8 functional interfaces
« e.g Supplier

- Based on function composition

- Based on Vavr
« Functional Programming in Java

@ O

o’

= hazelcast

y @nicolas_frankel

> Cons of Resilience4)

- Need to be very familiar with
Functional Programming

- No big picture

y @nicolas_Ffrankel '. hazelcast

y @nicolas_frankel

§: hazelcast

> Thanks

- https://blog.frankel.ch/
- @nicolas_frankel

- https://git.io/JenH9

y @nicolas_frankel 2 hazelcast

