
Event-driven Infrastructure

Mike Place
mp@saltstack.com
https://mikeplace.io

SaltStack

mailto:mp@saltstack.com
https://mikeplace.io

Part 0: A Thank You

Principles > Products

Part I: The Future is a Distributed
System With a Convergence

Problems

How do we reason about
complexity?

One way we reason about it is
through patterns

Active humans building proactive
processes create reactive systems

We’re very good at building
systems that say:

If x happens, then do y

But we’re bad at building systems
that say:

If NOT x, then y

Part II: New Ideas are Hard to Come By

Three Pillars of Distributed
Computing

● The ability for the system to be aware of the
existence and capability of its member nodes.

● The ability to co-ordinate tasks between those
nodes.

● Inter-process communication which can
connect nodes in the system to each other

The fundamental unit of distributed
computing is the event

What are the properties of a
message bus?

● Data model
● Command set
● Transport

Message Buses for Ops

● Monitoring
● Configuration management
● ChatOps
● Auto-scale
● Serverless
● Provisioning

Message Buses for Dev

● Almost anything that connects various layers of
an application stack has a message bus of
some kind

● Sometimes these are streaming
● Sometimes they’re just set up and torn down on

demand.

Part IV:

Question:

What possibilities emerge when these siloed
streams of events are shared with each other?

What does (most) automation look
like right now?

● Packaged workflows
− We take a series of steps (or a collection of

structured data) and we list them out and then we
go and do those steps, with, hopefully a little bit of
abstraction and error control.

− Much of the time, these workflows are initiated by
lazy humans.

− Despite our best-efforts, these can still be very
brittle because one thing we’re not very good at is
understanding the state of a system before
automation runs on it. We make a lot of
assumptions, even today.

This doesn’t feel much like programming.

(Whether you think this is awesome says a lot
about you.)

(And about us.)

Part V: Event Driven Programming

Event-driven Programming

● A programming paradigm in which the flow of
the program is determined by events such as
user actions (mouse clicks, key presses),
sensor outputs, or messages from other
programs/threads.

● Event-driven programming is the dominant
paradigm used in graphical user interfaces and
other applications that are centered on
performing certain actions in response to user
input.

Examples of Event Driven
Programming

● JavaScript
− node.js

● Most GUI applications on the desktop
● Pretty much any user interface on iOS

3 Principles of Event Driven
Programming

● A set of functions which handle events.
● A mechanism for binding the registered functions
to events.

● A loop which constantly polls for new events and
calls the matching event handler(s) when a
registered event is received.

Traditional Criticisms of Event-
Driven Programming

● One one hand, there is imperative programming
− Writing procedures to performs steps in a particular

order.
● On the other hand, we have declarative

programming
− Describing the intended state of a system without

explicitly describing the steps to achieve that state.

Criticisms continued

● Highly asynchronous code can be difficult to
troubleshoot

● It takes a mindshift to think about imperative
and declarative approaches melded into one.
This can create some confusion.

● It can be challenging to translate procedural
workflows into something event-driven.

Event-driven Programming
Advantages

● It’s easy to find natural dividing lines for unit
testing infrastructure.

● It’s highly composeable.
● It allows for a very simple and understandable

model for both sides of the DevOps bridge.
● Both purely procedural and purely imperative

approaches get brittle as they grow in length
and complexity.

● It’s one good way to model systems that need
to be both asynchronous and reactive.

High-speed event bus

+
Event-driven programming

==

Event-driven infrastructure

The enterprise-y term for this is
Message-Oriented Middleware

-

Reactive Manifesto

The enterprise-y term for this is
Message-Oriented Middleware

-

Principles of Event-Driven
Automation

● Events originate from applications and from
systems and are transmitted across a bus.

● Mechanisms exist to sort these events and
apply rules to them.

● As rules are matched, registered actions occur
— promises are met.

Disadvantages of an Event-Driven
Approach

● Possible tight coupling between the event
schema and the consumers of the schema.

● Message loss
● Reasoning about “blocking” operations might

becoming more difficult.
● Testing

Advantages of Event-Driven
Approach

● Distributed, scalable and loosely coupled
between systems.

● A “DevOps” automation backplane for system
● Does more than just configure/provision

systems at their birth. Allows for more complete
lifecycle management.

● Provides an immediate, common
programmable layer on top of existing
automation/deployment systems.

Part VI: Fine then. How do we build one?

(But first, a manifesto)

Flow

● An event is emitted on the event bus
● It flows to a manager
● The manager checks to see if the event

matches a registered handler
● If so, the a series of rules are checked
● For each set of rules which are matched, an

action is undertaken.

The moving pieces

● Event bus transport
● Telemetry
● Actors
● Reactors

Building Event Buses

Concerns for the bus

● MUST handle
− Security
− Reliability
− Serialization

● MAY handle
− An easy set of interfaces for send/receive, with

libraries for languages shared by Dev and Ops
− Multiple architecture patterns
− Message filtering
− Message routing

Message bus topology

● Pub/sub
− 1-M
− Most implementations are brokered, which means

they are loosely coupled. (i.e. the sender does not
know or care) about the status of the recipient.

− There are un-brokered implementations such as
Data Distribution Service (over IP multicast) which
exist, but they are (for the most part) not widely
deployed.

● Push/pull
− Is client/server but typically is a 1-1 relationship

instead of 1-M
● Fan-out

− Useful for creating a queue of workers through
which jobs must be distributed.

Off the shelf messaging

● ZeroMQ
● RabbitMQ
● Celery
● ActiveMQ
● JBoss messaging
● Apache Qpid
● StormMQ

● Apache Kafka
● Lambda
● Redis
● SaltStack

Telemetry

● The ability for applications to emit events onto
the bus.

● Should be light and easy enough that it’s simple
to port into any language.

● Should be lightweight messaging. Not the place
for pushing enormous amounts of data around.

● #/usr/bin/env python
● import zmq
● import os
● import socket
● import time
● import core.framer

● # Create a context
● ctx = zmq.Context()

● # Our tag
● tag = '/client/load/silver'
● while True:
● # Frame it up. (Uses msgpack)
● event = framer.pack(tag, {'cur_load': os.getloadavg()})
● socket = ctx.socket(zmq.PUSH)
● socket.connect('tcp://localhost:2001')
● socket.send(event)
● socket.close()
● time.sleep(1)

Building Reactors

Decision Engines

● A decision engine registers events which occur
on the bus to actions which need to be
performed.

● Can be as simple or as complex as one wants.
● The DevOps idea, here, is though to create a

shared abstraction for these rules.

Example configuration for very basic demo

This configuration maps simple event tags to actions

If we receive a high load alert, print an alert and reconfig a LB

/client/load/*:
 reactions:
 - reactions.printer.event_printer
 register:
 - register.aggregate.register
 rules:
 - rules.simple.gt:
 register: register.aggregate.avg
 threshold: 20
 period: 10
 reactions:
 - reactions.eventer.fire_event:
 tag: '/reconfig/lb'
 data:
 some_reconfig_data: 'dummy_data'

Actors

● Actors are simply what is run as a result of an
event matching a given rule.

● Possibilities
− Call to external service
− Configuration management call
− Code running locally

Part VII: A Pillar of Salt

Configuration Management is a
Service

Engine
● An engine is just a long-running pure-Python

process in Salt with access to the Salt
functionality injected into its namespace.

Beacon
● A beacon is a small Python function that runs in

a loop, looking for a state change and
broadcasts that change to a Salt master.

● Operational changes ex.: File changes, network
events, interface changes, container CRUDs,
database inserts.

Reactor
● Events flow from machines under management

(minions) to central servers (masters) via an
event bus.

● On the master, a reactor listens to those events
and executes appropriate jobs on matches.

A Networking Example

Translating message events w/
engines

<28>Jul 20 21:45:59 edge01.bjm01 mib2d[2424]: SNMP_TRAP_LINK_DOWN: ifIndex
502,
ifAdminStatus down(2), ifOperStatus down(2), ifName xe-0/0/0

Reactor

State files

State files (cont)

https://github.com/cachedout/eventdriventalk
https://mirceaulinic.net/2017-10-19-event-driven-

network-automation/

https://github.com/cachedout/eventdriventalk

Review

● To build scalable systems, we need to adopt the
lessons of distributed computing

● We can migrate from simple human-initiated
workflows to reactive, programmable systems.

● Event buses are pretty good. Let’s build more of
those.

● Build on top of tools (like Salt!) that can give us
a full automation toolkit up and down the stack.

Questions?

Mike Place
@cachedout

mp@saltstack.com

mailto:mp@saltstack.com

