
From Monolith to Microservices
Paul Puschmann

OSAD 2018, Munich

Our history

!3

Details REWE GROUP
Turnover

>54 bn

History

> 90 years

Employees

>330.000

Industries
Food Retail,
Tourism, DIY

Shops

>15.000

!4

What do we actually run?

Our history at REWE Digital

I started here.

Our history at REWE Digital

2014

40 15

100

28

150

51

2015 2016 2017

Services

Teams

1 2

200

51

2018

This is an approximation...

● Have a good platform / software architecture

● Scale the application

● Enable fast delivery of features, accelerate the business

Main Goals

● Take care of our “Managed-Hosting”

● Re-automate an already existing PROD-environment with Ansible

● Keep everything running

● Support our developers

● Do Pager-Duty

What did the Ops-people do?

● Integration of new features — difficult

● Deployments every two weeks — slow

● Deployments took eventually 1h — slow

● “Everything” in the monolith (plus databases) — had dependency constraints

Status Quo of the Monolith
2014 / beginning of year 2015

Wishes of the stakeholders:

● Features, features, features

● Application must not break

Developers

● We want to code, test, deploy

Ops

● Really!?

Wishes
Beginning of year 2015

● New features aren’t built into the monolith anymore,  

but as a separate applications

● We have strong guidelines regarding 

- API 

- Monitoring interfaces  

- Logging

Beginning of 2015
The Plan

● While building new functionality in to micro-services,  

existing features were extracted from the monolith (scoop out)  

to allow faster, independent development of features

● This should remove all BL from the monolith soon

Continued…
The Plan

The pressure of having a perfectly working runtime-environment soon was quite high.

Pragmatic decision: poor-mans micro-services

● @devs: please package your app in a .deb-package

● we do the rest via Ansible and HAProxy

Bring this to life, then move on

Containers? Yes, but no.
How should we manage all those new applications?

Our solution Containers

Should we use the early versions of Kubernetes or Mesosphere Marathon?

No.

We wanted to have an environment  

we were able to understand, automate and manage.

So we created a custom Docker-environment with Docker, Consul & Swarm.

Containers? Yes, but how?
How should we manage all those containers?

● Debian machines (VMs & Metal)

● Docker-CE

● Docker Swarm (not swarm-mode)

● Consul

● Consul-Template

● Dnsmasq

● Nginx

● Deployment with Ansible

● Secrets managed by “Ops" 

- sorry, no “Hashicorp Vault”, yet

Our solution consists of…

We say: No.

Because we created a solution we were capable to run and fits our needs.

“Best Practises” don’t work for everybody.

Only downsides so far:

• Docker swarm isn’t good at “deploy spread”

• We’ve no orchestration-service that ensures our containers are running fine 

and in the right number of instances

Reinventing the wheel?

● Blue / Green deployment

● Semi-automatic configuration / deployment of new databases

● Fully automated set-up of Team-Jenkins instances (even at GCP)

● A custom-built platform-service called “Slash” as a service-interface for our

developers

● Use a common set of Docker base-images with daily builds

Additional goodies

All is fine now?

What about

● Monitoring —> Check.

● Responsibility —> ? … depends

● THE MONOLITH?

The Monolith…

… is still in production.

Scaling Services

Our 45 teams are developing and running more than 150 services

Imagine if all of them talk to each other:

Scale at Servicelevel

Our 45 teams are developing and running more than 150 services

Imagine if all of them talk to each other:

Scale at Servicelevel

Our 45 teams are developing and running more than 150 services

Imagine if all of them talk to each other:

Scale at Servicelevel

Challenges in HTTP/REST-only architectures

Gateway

µService 1

µService 2

µService 5µService 4

● API-Guidelines

● Timeouts

● Fallbacks

● Circuit Breakers

● Eventing

µService 3

What is Eventing?

● Enable services to provide themselves with data asynchronously before it is needed in a request 
— Having data is better than needing data.

● „Kind of database replication“
● More performance & stability

Service A

a

Service B Service C

ca cba’ c’

What is the goal of Eventing?

produce produceconsumeconsume

● ID: Unique identifier

● Key: Which entity is affected?

● Version: Which version of this entity is this?

● Time: When did the event occur?

● Type: What kind of action happened?

● Payload: What are the details?

○ Entire entity - not deltas!

{
 “id” : “4ea55fbb7c887”,
 “key” : “7ebc8eeb1f2f45”,
 “version” : 1,
 “time” : "2018-02-22T17:05:55Z",
 “type” : “customer-registered”,
 “payload” : {
 “id” : “7ebc8eeb1f2f45”,
 “version” : 1,
 “first_name” : “Paul”,
 “last_name” : “Puschmann”,
 “e-mail” : “bofh(at)rewe-digital.com”
 }
}

Technical Event

customer 
data

customer topic
Customer

Data
Service

<<publish Event>>

Invoice 
Service

customer 
data’

<<subscribe Event>>

Loyalty 
Service

customer 
data’’

<<subscribe Event>>

. . . 
“payload”: {
 “customer_uuid” : ”876ef6e5”,
 “version” : 3,
 “name” : “Peter Smith”,
 “loyalty_id” : “477183877”,
 “invoice_address” : “752 High Street”,
 “delivery_address” : “67 Liverpool Street”
}

 “customer_uuid” : ”876ef6e5”,
 “version” : 3,
 “name” : “Peter Smith”,
 “invoice_address” : “752 High Street”

 “customer_uuid” : ”876ef6e5”,
 “version” : 3,
 “name” : “Peter Smith”,
 “loyalty_id” : “477183877”

Example: Customer Data

We chose Apache Kafka

● Open-source stream processing platform written in Scala and

Java

● High-throughput, low-latency platform for real-time data

streams

● Originally developed at Linkedin, open sourced in 2011

● Offers 4 APIs: Producer, Consumer, Stream, Connect

● We use Apache Kafka in a pub-sub manner. This means most of 
our services use the Producer and Consumer APIs

“Kafka is used for building real-time data pipelines and streaming apps. It is horizontally scalable, fault-tolerant,

wicked fast, and runs in production in thousands of companies.” (https://kafka.apache.org/)

Apache Kafka

● Every service which owns a resource should publish those resource-entities to a topic

● Use only one producer or make sure there are no issues about the order of events

● To enable log-compaction use a partitioner that ensures an event with the same key is always

sent to the same partition

● All producers should be able to republish all entities on request

A

B

C

D

<<publish>>

<<subscribe>>

<<subscribe>>

<<subscribe>>

topic

Producers

a

<<persist>>

Entity 
Repo

Event 
Repo

Published 
Version

Repo

Producer

<<
up

se
rt>

>

<<upsert>>TX_1
<<delete>>

Topic

<<upsert>>

TX_2

<<publish>>
● The producer has to make sure that the

message is delivered and committed

● Therefore we store the raw event in a

database to enable retries until it’s

committed to the cluster

● Scheduled jobs can take care of retries

and cleanup

Producers

● Every service can consume every available data and should consume all data it needs to fulfil

a request - having data at request time is better than trying to get it from another service

● The consumer has to process events idempotently. An event could be consumed more than

once. The infrastructure ensures at-least-once delivery

● Consumers have to take care of deployment specialties like blue/green

● Consumers should be able to re-consume from the beginning. 
For instance if local data-model needs changes or additional data

● Consumers only should persist the data they really need

Consumers

● The consumer is responsible for a

manual commit only after a successful

processing of the event. Successful can

mean:

● Needed data from an event is saved in

the services data-store

● The event can’t be processed and is

stored in a private error queue / table
Entity 
Repo

Error 
Repo

Processed 
Version

Repo

Consumer

<<upsert>
>

Topic
<<subscribe>>

<<
up

se
rt>

>

<<insert>>

Consumers

Pros Contras

• Each service has its own database:
This impacts / supports migrations, query
tuning, database usage

• Topic replication / mirror:
The replication of topics to different
brokers offer support for a second
datacenter or migration to different
environments

• Asynchrony:
Services don’t need no do synchronous
calls to share their data with other services

• Another super important service:
Kafka is the hub of your business data. 
Take care about this.

• Redundancy of data:
Your databases will store the same data, or
subsets, more than once

• Asynchrony:
A consumer may not be up-to-date with
some topics, this might lead to
inconsistencies, e.g. in the frontend

Kafka & Ops

Kafka & Ops
Eventing benefits for Operation

By using the concept of “Kafka-mirrors”, 
you can push selected topics to a different Kafka-Cluster (one-way).
This way you easily can setup services as consumers at a different datacenter.

For producers you’d shut down the producer, switch the direction 
of the “kafka-mirror” and the start the producer “at the other side”. 
Optionally: delete the topic, create and fill it anew.

Possible alternative: 
create Kafka-Clusters spreading over datacenters and use „rack-awareness“

Helpful things

● Strong Architecture-Guild: 

- Eventing-Guide 

- API-Guide 

- … and many more

● Active Communication of changes & constraints

● Monthly / Bi-monthly Bootcamps for (new) colleagues

What helped us most?

• Introduction of Eventing (with Kafka)

• Make development teams analyse logs & metrics on their own

• Strong usage of ELK

• Strong usage of Prometheus

• External traffic (Web, mobile App, partners)  

always has to get routed through a gateway (service)

Continued …
What helped us most?

What we Learned

• Communication is a key factor

• Automation pays off

• Eventing with Kafka is cool

• Temporary solutions last very long

• The knowledge / distribution of RACI-model helps (RACI-matrix)

• UBIURI (you build it, you run it) is not only an option

What did we learn?

We did try to scoop out the Monolith. —> That was not a good idea.

Perhaps better: 

Put a gateway in front of your legacy-application and switch resource by ressource.

Every service must have an owner!

What did we learn?
Continued …

The Future

The Future

… will be different in many ways.

• UBIURI / You build it, you run it

• SRE-pattern ?

• No more Devs + Ops but DevOps?

We’ll see…

The Future

Thank You!
Paul Puschmann I @ppuschmann I www.rewe-digital.com I @rewedigitaltech

All background photos are licensed under CC0. Source: pexels.com

From Monolith to Microservices
OSAD 2018, Munich

https://creativecommons.org/publicdomain/zero/1.0/
http://pexels.com

